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Abstract. We present and discuss, at a general level, new mathematical results on the spatial
non-uniformity of thermal quantum fields coupled minimally to static background electromagnetic
potentials. Two distinct examples are worked through in some detail: uniform (parallel and
perpendicular) background electric and magnetic fields coupled to a thermal quantum scalar field.

1. Introduction and general results

In thermal quantum field theory (hereafter referred to as thermal QFT) with matter fields
coupled to an external gauge potential it has long been known [1–7] that a constant Euclidean
gauge potential† AE

0 = a = constant is a compact physical parameter. Upon first encounter
this may seem strange, because at zero temperature (T = 0) one can simply remove such a
constant by means of a gauge transformation AE

µ → AE
µ − ∂µλ with λ = x0A

E
0 . However,

in the Matsubara or imaginary time formalism [8, 9] (which we use throughout this paper)
bosonic (fermionic) matter fields must be periodic (antiperiodic) functions of (Euclidean)
time, with period β = 1

T
. This restricts the allowed gauge transformations to those satisfying

λ(x0 + β) = λ(x0) + ηπ mod 2π , with η = 0 (1) for bosonic (fermionic) matter fields. Hence
the constant a can only be removed if a = (2N + η)(π/β).

It follows from the above that it is always possible to gauge an arbitrary AE
0 (�x) into the

physical interval 0 � AE
0 (�x) � 2π

β
at every point �x. Moreover, βAE

0 = 2π is gauge-equivalent

toβAE
0 = 0; hence the real dimensionless quantityβAE

0 is compact, i.e. an angle. What physics
underlies this angular variable? A specific and complete answer to this question can be given.
Though the essential facts have been known for a long time, many in the field theory community
seem not to be aware of this physical picture, as we have not found it discussed in the literature.

The physical meaning of the angle βAE
0 emerges from the old observation‡ (see, e.g.,

[10, 11]) that an imaginary constant Euclidean gauge potential

AE
0 = iA0 A0 = µ (1.1)

† Throughout this paper we shall move freely back and forth between Euclidean and Minkowski spacetime. For
the sake of clarity we attach the label E to (certain) Euclidean quantities, and in particular to the Euclidean gauge
potential.
‡ Note that we absorb the unit e of the electric charge carried by the particles of the matter field into the gauge
potential AE

µ . Thus the covariant derivative is Dµ = ∂µ − iAE
µ , and AE

µ has, in natural units, the dimension of energy.

In particular, AE
0 (�x) is the electrostatic energy of a positive charge at point �x. To discuss voltage explicitly, we refer

to AE
0 (�x)/e.
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corresponds to a chemical potential µ for the thermal matter field to which Aµ is minimally
coupled. This is true for both spinor and scalar thermal fields. Equation (1.1) is written
to emphasize that, eventually, one must change from the background Euclidean potential
AE

µ = (AE
0 ,

�A) to the corresponding background Minkowski potential Aµ = (−iAE
0 ,

�AE)

when writing down one’s final physical formulae. The identification A0 = µ as a chemical
potential is merely the recognition that for a charged particle in a uniform background voltage
A0/e pervading all of space, A0 has the meaning of a chemical potential: it is the electrostatic
energy that must be expended to create the charged particle at whatever position �x this particle
occupies. In section 2 we similarly recognize that locally a non-uniform background voltage
A0(�x)/e has this same interpretation.

The physical significance of a constant AE
0 /e is now clear. It represents, in Euclidean

language, a uniform voltage A0/e throughout space. Clearly, A0 = constant is a true physical
parameter (non-compact obviously), a voltage which is felt by any real charged particle,
and felt in particular by the real particles of the thermal plasma. In the limit T → 0 this
plasma disappears, leaving the virtual particle sea, which is not sensitive to a uniform voltage
throughout space. The sea knows nothing about a uniform background voltage because
the virtual pairs of which the sea consists have precisely zero electrostatic energy in such
a background.

Once it is known that Euclidean βAE
0 is an angular variable one can, using the power of

Fourier analysis, write all gauge-invariant physical functions as Fourier cosine series in this
angle. Thus for, respectively, the diagonal elements of the Euclidean heat kernel h(β), effective
Lagrangian L(β) and stress tensor T (β)

µν of the thermal quantum field we can write

h(β)(t |�x, �x) =
∞∑
n=0

(±)nh(β)
n (t |�x) cos(nβAE

0 (�x)) (1.2)

L(β)(�x) =
∞∑
n=0

(±)nL(β)
n (�x) cos(nβAE

0 (�x)) (1.3)

T (β)
µν (�x) =

∞∑
n=0

(±)nT
(β)

µν;n(�x) cos(nβAE
0 (�x)). (1.4)

Here, in each formula the coefficients of cos(nβAE
0 (�x)) depend on �E(�x) = −�∇AE

0 (�x) and
�B(�x) = �∇ × �A(�x), but not directly on AE

0 (�x). Our use of AE
0 (�x) here implies an arbitrary

static Euclidean gauge potential, and that will be our final result. Section 2 is devoted to
demonstrating the above implied compactification of AE

0 (�x) at the local level. The non-
alternating/alternating sign (±)n is appropriate for scalar/spinor thermal matter fields. One
could equivalently disregard this sign and replace AE

0 by AE
0 −η(π/β) everywhere with η = 0

[1] for the scalar (spinor) field.
It is worth pointing out that equations (1.2)–(1.4) display the expected complete separation

of all functions characterizing the thermal field into parts representing the virtual sea and
thermal plasma; e.g. for the heat kernel we have

h(β) = hsea + h
(β)

plasma (1.5)

where

hsea = h0(t |�x) (1.6)

h
(β)

plasma =
∞∑
n=1

(±)nh(β)
n (t |�x) cos(nβAE

0 (�x)) (1.7)
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where h0(t |�x) is the T = 0 heat kernel and represents the vacuum or virtual particle sea
contribution to the thermal heat kernel. The vacuum is always independent of T : its virtual
particles do not have the prolonged existence needed to come into thermal equilibrium with
anything. Neither does the vacuum feel an applied voltage directly, so hsea cannot depend
explicitly on AE

0 . Similarly, L(β) and T (β)
µν separate into sea (n = 0) and plasma (n > 0) parts,

the former being independent of β and AE
0 , while the latter depend on both β and AE

0 .
Before embarking on calculations, a few words about background �E and �B fields interacting

with the vacuum and with the thermal plasma may be of use to some readers.

Virtual sea

The standard visualization of vacuum quantum fluctuations as virtual pairs—initially zero-
length ‘vacuum dipoles’ which grow to maximum size, then shrink again to zero length and
annihilate away—enables one to also visualize the effect of a background A0, as well as the
effect of electric and magnetic fields, on these fluctuations. Due to their mutual ‘binding’,
virtual pairs do not feel A0(�x) directly. This was already mentioned for constant A0. The
vacuum pair, however, couples to any non-uniformity in A0(�x), i.e. to the electric field.

A background electric field exerts an aligning torque on the vacuum dipoles—the famous
‘vacuum polarization’ effect. �E also tries to stretch or shorten these non-rigid dipoles,
depending on their orientation relative to �E. A vacuum dipole whose moment is parallel
to �E will be stretched and, perhaps, even given enough external energy to break apart into real
particles. Dipoles antiparallel to �E will be shortened; those perpendicular to �E only rotated.
Real pair creation occurs from the vacuum, preferentially along the direction of �E, but not
perpendicular to �E. Pair creation is independent of T . As in Schwinger’s original T = 0
calculation [12] and the subsequent literature known to us (see, e.g., the books [13–15]), our
calculations predict the phenomenon of pair creation, but do not take account of these pairs
once they have been produced. All such calculations treat pair creation as a perturbation of a
pre-existing many-body system—the virtual sea or the sea plus plasma, with fixed background
�E and �B—whose subsequent development is not investigated†.

A background �B cannot transfer energy to individual particles, and therefore cannot cause
particle production from the vacuum. Evidently, �B acts locally (more or less rigidly) to displace
vacuum pairs, but not to stretch or shorten them. To this limited extent the vacuum can be
aware of �B.

Thermal plasma

The thermal plasma is a neutral quantum gas of unbound charged real particles. Pair creation
does not occur from the thermal plasma. Through their electrostatic energy these particles know
individually about the background potentialA0(�x)—our main point leading to equations (1.2)–
(1.4). If �E(�x) = −�∇A0(�x) �= 0, these particles feel the Coulomb force �F = q �E individually,
which of course accelerates q = e (−e) parallel (antiparallel) to �E. Neither our calculation, nor
others in the T > 0 literature follow up the consequences of this acceleration. Through their

† For the sake of completeness we mention here the non-equilibrium approach to background fields [16]. In this
approach the existence of an electric field �E0 is assumed as an initial condition with, say, no real pairs present. Pair
production ensues, and the produced pairs serve in turn as sources of an additional electric field: charge separation
occurs, first partially, cancelling, then strongly overcancelling �E0. More pairs are produced and things go in reverse.
Eventually plasma oscillations set in. These calculations involve large sets of coupled equations and are intensively
numerical. There is no thermal equilibrium, and hence no temperature. Our analytic work here could serve as the
T > 0 initial conditions for such numerical investigations.
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thermal motion, the plasma particles also feel the magnetic force �F = q �v × �B perpendicular
to �B. Functions describing the thermal plasma therefore depend on A0(�x), �E and �B.

2. Euclidean spacetime

2.1. Compactification

The Fourier series (1.2)–(1.4) rest upon the fact that in any gauge-invariant quantity, βAE
0 (�x)

plays the role of a local compact angle, 0 � βAE
0 (�x) � 2π , since, as we have seen, one

can gauge this function into the interval [0, 2π
β

] at any point �x in space. Moreover, the upper
and lower ends of this interval can be identified by a gauge transformation. Note that this
compactification does not extend to a time-dependent gauge potential AE

0 . Indeed, within the
Matsubara formalism one cannot accommodate time-dependent backgrounds of any kind.

The Fourier series (1.2)–(1.4) express, or are the result of, a remarkable series
resummation, as we shall illustrate in subsection 2.3 below. Let us briefly recall the mode-
sum construction of the thermal heat kernel for a scalar field coupled to an arbitrary static
background potential Aµ(�x) [17]. The spacetime Matsubara modes

φmp(x0, �x) = 1√
β

ei(2πm/β)x0ϕmp(�x) (2.1)

satisfy (−D2)φmp = λ2
mpφmp, where Dµ = ∂µ − iAE

µ , m runs over all integers, and p is a
collective label for all spatial directions. The modes ϕmp(�x) satisfy

[(
AE

0 (�x) − 2πm

β

)2

− ( �∇ − i �A(�x))2

]
ϕmp(�x) = λ2

mpϕmp(�x). (2.2)

Here the (AE
0 −2πm/β)2 term in parentheses has particular importance. It couples the position

�x to the Matsubara label m. Also, it displays the local compactification of AE
0 : the shift

AE
0 → AE

0 − 2πN/β merely shifts the Matsubara label, m → m + N .
The thermal heat kernel of the operator −D2

µ is defined by

h(β)(t |x, y) =
∑
m,p

e−tλ2
mpφmp(x)φ

∗
mp(y). (2.3)

The corresponding diagonal elements

h(β)(t |x, x) =
∑
m,p

e−tλ2
mp |ϕmp(�x)|2

=
∑
n

h(β)
n (t |�x) cos(nβAE

0 (�x)) (2.4)

display the mode sum resummation to a Fourier series, alluded to above. For reasons of gauge
invariance the coefficients in equation (2.4) can only depend on the Euclidean electric field
−�∇AE

0 and magnetic field �B = �∇ × �A, but not on the potential AE
0 directly. Except for the

n = 0 coefficient, they also depend on the temperature. In the limit T → 0 all the h(β)

n �=0 vanish
exponentially (the thermal plasma disappears), and what remains is the T = 0 heat kernel
(1.6) for the virtual sea. All of these statements are illustrated by the example in subsection 2.3
below, and those in sections 4 and 5.
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2.2. Effective Lagrangians

Much of the early work on thermal quantum fields coupled to background gauge fields was
concerned with effective Lagrangians for the potential AE

0 (see, e.g., [2, 6, 7], as well as [18],
for more recent work). A related theme was the study of ‘order parameters’ which signalled the
deconfinement phase transition at high T in non-Abelian gauge theories (see, e.g., [3–5]). Our
formula (1.3) has a natural interpretation as an effective Lagrangian = L(β). The coefficients
L(β)
n (�x) of cos(nβAE

0 ) in equation (1.3) are actually functions of �E · �E = ( �∇AE
0 )

2 (not to
mention �B · �B which we suppress here), and therefore play the role of (very complicated)
‘kinetic terms’ in L(β)(AE

0 ). The cos(nβAE
0 ) factors play the role of ‘potential terms’ in the

same Lagrangian. An expansion of L(β) in powers of �E · �E and (AE
0 )

2 has the form

L(β) = a0 + a1(A
E
0 )

2 + · · ·
+ ( �∇AE

0 )
2[b0 + b1(A

E
0 )

2 + · · ·]
+ · · · (2.5)

where we find the conventional kinetic term among all the others. Here the coefficients
an, bn, . . . are independent of AE

0 and �E (but depend on background �B).

2.3. Fourier series and resummation

In the following we wish to illustrate, for the case of fermions in one space dimension,
how the Fourier series in (1.1) is the result of an infinite resummation of the Matsubara
sum. Thermal fermionic fields must, of course, satisfy an antiperiodic boundary condition
in x0. Let us consider equations (2.1) and (2.2) for a scalar field satisfying the antiperiodic
boundary conditionφ(x0 +β) = −φ(x0) in Euclidean time. This only requires the replacement
m → m+ 1

2 in equations (2.1) and (2.2). In the mode equation (2.2) the 1
2 can be absorbed into

the gauge potential, AE
0 → AE

0 − π/β, leaving everything else just as it was. Consequently,
the only change in the heat kernel (2.4) and related Fourier series is

cos(nβAE
0 ) → (−)n cos(nβAE

0 ).

The preceding argument indicates that for thermal Fermi fields one will have the alternating
signs displayed in equations (1.2)–(1.4).

The periodicity displayed in equation (1.2) for the thermal heat kernel has implications
going far beyond the standard lore of asymptotic heat kernel expansions (see [19, 20], and
references therein). It is instructive to see how this periodicity comes about in the context of
a Seeley expansion of the heat kernel.

In [21] it was shown that in two spacetime dimensions the heat kernel for the Dirac operator
of massless fermions in an external, static gauge field AE

0 = (Ex1 + 2πa
β
, A1 = 0) takes the

form

tr h(β)(t; x, x) = E
2π

(
1

tanh E t

) {
1 + 2

∞∑
n=1

(−1)n cos

[
nβ

(
Ex1 +

2π

β
a

)]
e− n2β2E

4 tanh E t

}
(2.6)

where we see the anticipated alternating sign in the sum. Expanding the E-dependent
multiplicative factor as well as the exponential in powers of t ,

E
2π

(
1

tanh E t

)
= 1 + 1

3 (E t)2 + · · ·

e− n2β2E
4 tanh E t = (1 − 1

12n
2β2E2t + · · ·)e− n2β2

4t
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one finds from (2.8) for the diagonal elements of the heat kernel,

2π tr h(β)(t; x, x) = 1

t

[
1 + 2

∞∑
n=1

(−)ne− n2β2

4t cos[n(Eβx1 + 2πa]

]

− 1
6

∞∑
n=1

(−)ne− n2β2

4t n2β2E2 cos[n(Eβx1 + 2πa)] + O(t). (2.7)

On the other hand, it was shown in [22] (see also [21]) that the above heat kernel possesses
a formal expansion of the form

h(β)(t; x, x) = 1

4πt

∞∑
%=0

a%

(
x;

√
t

β

)
t% (2.8)

where

a%

(
x;

√
t

β

)
=

√
4πt

β2

∫
dk1√
π

∞∑
m=−∞

e−(k2
1 +ω̄2

m(
√
t/β)) (2.9)

×
{

%∑
r=0

∑
dist.perm.

(−1)%−r

(% + r)!
(2ik · D)2r D̂%−r

}
k2=ω̄m(

√
t/β)

· 1

where the sum is over all distinct permutations, ω̄m are the scaled Matsubara frequencies

ω̄m

(√
t

β

)
= 2π

(
m + 1

2

) (√
t

β

)
= √

tωm

and

Dµ = ∂µ − iAE
µ D̂ = −∂2 + (AE

0 )
2 + X

with X a matrix valued field (ε01 = 1)

X = − 1
2γ

5εµν∂µA
E
ν .

In (2.9) we have already taken account of the fact, that only even powers in k1 and ω̄m will
contribute to the integral and sum in (2.9). The leading contribution to (2.9) for t → 0 is given
by the r = % term in the sum, and in particular by the term ω̄mA

E
0 in ik · D. Hence,

a%

(
x;

√
t

β

)
≈

√
t

β2

∫
dk1√
π

e−k2
1
√

4π
1

(2%)!

∑
m

e−ω̄2
m(4ω̄2

m)
%(AE

0 )
2%

=
√

t

β2
Ī%
(AE

0 )
2%

(2%)!
+ O

(
t

t%

)
(% > 0) (2.10)

where

Ī% =
√

4π
∞∑

m=−∞
(4ω̄2

m)
%e−ω̄2

m . (2.11)

We obtain the expansion of Ī% in powers of t by repeatedly differentiating the Jacobi identity

∞∑
m=−∞

e−τ [2π(m+ 1
2 )]

2 =
√

1

4πτ

[
1 + 2

∞∑
n=1

(−)ne− n2

4τ

]
(2.12)
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with respect to τ , and setting τ = t
β2 . We thus find

Ī0 =
√
β2

t
[1 + 2

∞∑
n=1

(−)ne− n2β2

4t ]

Ī% =
√
β2

t
2(−1)%

∞∑
n=1

(−)ne− n2β2

4t

[(
n2β2

t

)%

+ O

(
t

t%

)]
.

We thus finally have from (2.10)

a0

(
x;

√
t

β

)
=

[
1 + 2

∞∑
n=1

(−)ne− n2β2

4t

]

t%a%

(
x;

√
t

β

)
= 2(−)%

∞∑
n=1

(−)ne− n2β2

4t

[
(nβAE

0 )
2%

(2%)!
+ O(t)

]
(% > 0).

(2.13)

Hence

∑
%

t%a%

(
x;

√
t

β

)
= 1 + 2

∞∑
n=1

(−)ne− n2β2

4t
[
cos(nβAE

0 (x)) + O(t)
]
. (2.14)

Substitution of (2.14) into (2.8) reproduces the leading term in the small-t expansion (2.7) of
the heat kernel.

The corresponding calculation of next to leading order is very cumbersome due to the
non-commutativity of the operators appearing in the expansion (2.9), and we shall not persue
this any further.

3. Minkowski spacetime

Once we know that equations (1.2)–(1.4) are valid for an arbitrary static Euclidean background
potential AE

0 (�x), it is clear that we must continue these formulae to Minkowski spacetime in
order to make them physically meaningful. With thermal equilibrium having been assumed,
there is no x0 dependence anywhere to deal with. The only continuation needed is in the gauge
potential

AE
0 (�x) → iA0(�x) (3.1)

and correspondingly in the background electric field

�E = −�∇AE
0 → i �E = −i �∇A0. (3.2)

Making the change (3.2) wherever �E appears in the coefficients in equations (1.2)–(1.4) as
well as the replacement cos nβAE

0 → cosh nβA0, equations (1.2)–(1.4) become Minkowski
spacetime statements. The latter are the central results of the present paper, obtained by general
arguments based on gauge invariance and Fourier analysis.

At this point examples may be helpful. Let us quote the following two thermal heat kernels
from [17, 21] where the detailed calculations can be found.

Continuing (2.6) to Minkowski space we have for a spinor field in one spatial dimension
coupled to Aµ = (Ex1 + µ, 0) [21]:

tr h(β)(t |x, x) = E

2π tanEt

∞∑
n=−∞

(−)ne−n2β2E/4 tanEtenβ(Ex1+µ). (3.3)
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For a scalar field in d spatial dimensions coupled to Aµ = (Ex1 + µ, �0) [17]:

h(β)(t |x, x) = (4πt)−
d−1

2
E

4π sinEt

∞∑
n=−∞

e−n2β2E/4 tanEtenβ(Ex1+µ). (3.4)

The background in equations (3.3) and (3.4) is a uniform electric field in the x1 direction.
The vacuum (n = 0) contributions

spinor: tr h(β)(t)sea = E

2π tanEt

scalar: h(β)(t)sea = (4πt)−
d−1

2
E

4π sinEt

(3.5)

to the thermal heat kernels above display the ubiquitous singularity at t = 0 and, in addition,
singularities at t = qπ/E with q = 1, 2, 3, . . . . One does not expect to find the latter
singularities in a physical heat kernel. They are present here because the vacuum is unstable:
the background electric field produces (at a temperature-independent rate which does not
directly involve the background voltage A0/e) pairs of real particles from the sea. This has
been discussed by Schwinger [12] and by others (see, e.g., the books [13–15]).

The plasma contributions in equations (3.3) and (3.4)—the sum of all n �= 0 terms—
display all of the properties mentioned earlier. They are non-singular at t = 0: the thermal
plasma is UV-finite. They have no singularities for t > 0: pair production from the sea is
temperature independent. They vanish exponentially as T → 0: the plasma disappears. Most
importantly, they depend explicitly on the gauge potential A0 = Ex1 +µ in the way we expect
them to.

Global studies of thermal fields coupled to a uniform background E are given in [23–26].
These investigations do not find the cosh[mβ(Ex1 +µ)] dependence in local plasma quantities.
For large x1 the factors cosh[mβ(Ex1 + µ)] diverge. However, the meaning of this (apparent)
divergence can be explained in very physical terms. It is the result of the background voltage
function which is unbounded as x1 → ±∞, this being of course an idealization associated
with a uniform electric field of infinite spatial extent.

4. Parallel uniform electric and magnetic fields

To further illustrate the Fourier series (1.2)–(1.4), we now discuss the problem of parallel
uniform �E and �B fields coupled to a thermal scalar field. Parallel �E and �B exert mutually
perpendicular electric and magnetic forces on individual charged particles. Mathematically
this leads to a complete factorization of the electric and magnetic sectors. Global treatments
of the spinor version of this problem can be found in [24–26]. The T = 0 problem was solved
by Schwinger long ago [12].

4.1. Infinite space

For the Euclidean gauge potentialAE
µ(�x) = (Ex1+c0, 0, 0, Bx2+c3) corresponding to a uniform

background magnetic field �B = (B, 0, 0) parallel to the Euclidean electric field �E = (E, 0, 0),
the mode equation (2.2) separates. With p = (n, n′, k) and modes

ϕmp(�x) = 1√
2π

eikx3ψmn(x1)ψkn′(x2) (4.1)

equation (2.2) separates into

[−∂2
1 + E2(x1 + c0/E − 2πm/βE)2]ψmn(x1) = 2E(n + 1

2 )ψmn(x1) (4.2)
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and

[−∂2
2 + B2(x2 + c3/B − k/B)2]ψkn′(x2) = 2B(n′ + 1

2 )ψkn′(x2) (4.3)

where n, n′ = 0, 1, 2, . . . and

λ2
mp = 2E(n + 1

2 ) + 2B(n′ + 1
2 ). (4.4)

A peculiarity of this spectrum is its lack of dependence on m and k. This degeneracy does
complicate the calculation of global quantities but not, as we shall see, of local functions.
One knows the eigenvalues and eigenfunctions in equations (4.2) and (4.3) since they are both
harmonic oscillator (HO) equations in d = 1. Hence the corresponding eigenfunctions are

ψmn(x1) = 2−n/2 1√
n!

( E
π

)1
4

e− 1
2 Ex2

mHn(
√

Exm) (4.5)

with

xm ≡ x1 +
c0

E − 2πm

βE m = 0, 1, 2, . . . (4.6)

and

ψkn′(x2) = 2−n′/2 1√
n′!

(
B

π

)1
4

e− 1
2 Bx2

k Hn′(
√
Bxk) (4.7)

with

xk = x2 + (c3 − k)/B n′ = 0, 1, 2, . . . .

Here Hn(z) are Hermite polynomials satisfying H ′′
n − 2zH ′

n + 2nHn = 0. The (diagonal) heat
kernel constructed from the modes (4.5) is respectively (see [17] for details)

h
(β)

1 (t |x, x) = E
4π sinh E t

∞∑
n=−∞

e−n2β2E/4 tanh E teinβ(Ex1+c0). (4.8)

The (off-diagonal) heat kernel constructed from the modes (4.7) is

h2(t |x, y) =
[

B

2π sinh 2Bt

] 1
2 1

2π

∫ ∞

−∞
dk e− 1

2 B(xk−yk)
2 coth 2Bte−Bxkyk tanhBt (4.9)

where again the details of the calculation parallel those in [17].
Putting things together, the Minkowskian diagonal heat kernel for parallel electric and

magnetic fields can now be written down (using E = iE, c0 = iµ to continue to Minkowski
spacetime):

h(β)(t |x, x) = B

4π sinhBt

E

4π sinEt

∞∑
n=−∞

e−n2β2E/4 tanEtenβ(Ex1+µ) (4.10)

where the integration over k has eliminated all dependence on the spatial coordinate x2 and on
the constant c3 from the diagonal local heat kernel.



4594 A A Actor and K D Rothe

4.2. Arbitrary B1(x2)

The factorization of the electric and magnetic sectors for parallel �E and �B fields can be further
exploited. Let us replace the potential A3 = Bx2 + c3 above by an arbitrary function A3(x2) of
x2. Then the background magnetic field B1 = ∂2A3 has an arbitrary dependence on x2. The
modes (4.1) still factorize, and equation (4.3) is replaced by

[−∂2
2 + (A3(x2) − k)2]3kn′(x2) = w2

kn′3kn′(x2).

Now λ2
mp = 2E(n+ 1

2 )+w2
kn′ , with the (unknown) eigenfunctions 3kn′(x2) and spectrum {w2

kn′ }
determined by the mode equation just above. The heat kernel (4.10) is replaced by

h(β)(t |x, x) = h
(β)

2 (t |x2, x2)
E

4π sinEt

∞∑
n=−∞

e−n2β2E/4 tanEtenβ(Ex1+µ)

with

h2(t |x2, x2) =
∫

dk
∑
n′

e−tw2
kn′ |3kn′(x2)|2

in place of h2 = B/4π sinhBt . Obviously, the Fourier series structure of the heat kernel is
preserved, even for arbitrary B1(x2).

4.3. Cylindrical space

If the spatial direction x3 were compact, say 0 � x3 � L, the conjugate momentum k would be
discrete: k = r(2π/L) with r = 0,±1,±2, . . . . Then the integral (4.9) would become a sum
over r , exactly the same mode sum which leads to the Euclidean version of the electric field
factor in equation (4.10), with L and iB in place of β and E. Thus the above compactification
of x3 leads to the thermal heat kernel

h(β)(t |x, x) = B

4π sinhBt

∑
r

e−r2L2B/ tanhBteirL(Bx2+c3)

× E

4π sinEt

∑
n

e−n2β2E/ tanEtenβ(Ex1+µ), (4.11)

equation (4.10) being the L = ∞ limit of this. By compactifying the spatial axis x3, the gauge
potential A3 = x2B +c3 has turned into a compact local variable 0 � LA3 � 2π , very much as
the compactification of Euclidean time leads to the compactification of βAE

0 . This has nothing
to do with the electric field and remains true at zero temperature and E = 0.

Interesting mathematical physics is associated with the compactification ofLA3; however,
this lies beyond the scope of the present paper. We mention some early literature (see, e.g.,
[27, 28]) which investigates the effect of x3 compactification on a T = 0 quantum field theory.

5. Perpendicular electric and magnetic fields

Finally, we work through the quite different problem of perpendicular background �E and �B
fields. For such a background the magnetic force on moving charges has a component in the
direction of the electrostatic force on the same charge. This couples the electric and magnetic
sectors, eliminating the factorization observed for �E ‖ �B in the preceding section. See [24–
26] for the spinor version of this system (treated globally) and Schwinger [12] for the T = 0
problem.
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Choosing the Euclidean gauge potentialAE
µ(x) = (Ex1+C0, 0, Bx1+C2, 0) corresponding

to background (Euclidean) electric and magnetic fields �E = (E, 0, 0) and �B = (0, 0, B),
respectively, the mode operator in equation (2.2) is

−D2 =
(

Ex1 + C0 − 2πm

β

)2

− ∂2
1 + (−k2 + Bx1 + C2)

2 + k2
3

= −∂2
1 + w2(x1 − u)2 + v2 + k2

3 (5.1)

where

w2u = E
(

2πm

β
− C0

)
+ B(k2 − C2) (5.2)

w2v2 =
[
B

(
2πm

β
− C0

)
− E(k2 − C2)

]2

(5.3)

and w2 = E2 + B2. We have included the constant term in A2 = Bx1 + C2 even though
we know that C2 cannot appear in physical quantities, for it is of some interest to see how
the mathematics eliminates C2. In equation (5.1) we have assumed the modes (2.2) (with
p = (n, k2, k3)) to be of the factorized form

ϕmp(�x) = 1

2π
ei(k2x2+k3x3)ϕmnk2(x1). (5.4)

The eigenvalues λ2
mp of the operator (5.1) are then given by

λ2
mp = 2w(n + 1

2 ) + k2
3 + v2 (5.5)

with HO eigenfunctions ϕmnk2(x1) = ϕn(x1 − u), where ϕn is given by

ϕn(x) = 2−n/2 1√
n!

(w
π

) 1
4

e− 1
2 wx2

Hn(
√
wx). (5.6)

The result of the calculation of the Euclidean thermal spacetime heat kernel (2.3) is expedited
by equation (4.9) with the substitution B → w. For the diagonal heat kernel one finds

h(β)(t |x, x) = 1

β

∑
m

1

4π2

∫
dk2 dk3 e−tk2

3 e−tv2
[ w

2π sinh 2wt

]1/2
e−w tanhwt(x1−u)2

(5.7)

with u and v2 given by equations (5.2) and (5.3). The change of variable (which eliminates
C2)

wv = E(k2 − C2) − B

(
2πm

β
− C0

)

leads to

h(β)(t |x, x) = (4πt)−1/2
[ w

2π sinh 2wt

]1/2 w

E
∫ ∞

−∞
dv e−tv2 1

β

∞∑
m=−∞

e−w tanhwt(x1−u)2
(5.8)

with now

u = 1

E

(
2πm

β
− C0

)
+

B

wE v.
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The Matsubara sum is done with the help of a well known theta function identity

1

β

∞∑
m=−∞

e−w tanhwt(x1−u)2 = E
[

1

4πw tanhwt

]1/2

×
∞∑

n=−∞
e−n2Eβ2/4w tanhwte−inβ(Ex1+C0)einβBv/w. (5.9)

Finally, we employ

1

2π

∫ ∞

−∞
dv e−tv2

einβBv/w = (4πt)−1/2e−n2β2B2/4w2t

to write the heat kernel (5.8) in the form

h(β)(t |x, x) = (4πt)−1 w

4π sinhwt

∞∑
m=−∞

e−m2β2E/4w tanhwte−m2β2B2/4w2te−imβ(Ex1+C0) (5.10)

which has the expected form (2.3) with non-alternating sign. Moreover, for B → 0 or E → 0
this heat kernel has the correct limits.

6. Conclusion

Our main result is that for a thermal charged matter field coupled to a static electromagnetic
background gauge potential Aµ(�x) the thermal plasma—but not the virtual sea—feels locally
the potential A0(�x) in addition to the gauge-invariant electric and magnetic fields �E = −�∇A0

and �B = �∇ × �A. This was discovered in the context of specific calculations [17, 21] involving
a constant background �E, with �B = 0. Here we have explained the underlying general
principles and generalized the discussion to an arbitrary static potential A0(�x) (and hence also
an arbitrary static electric field) and an arbitrary static magnetic field �B(�x). For reasons of
gauge invariance the Euclidean gauge potential AE

0 (�x) is a local compact variable in any local
function describing the many-body quantum system. This function therefore has a Fourier
cosine series expansion in βAE

0 (�x), in which the term independent of AE
0 represents the virtual

sea contribution. Continued to Minkowski spacetime, this series becomes a hyperbolic cosine
expansion in the Minkowski potential βA0(�x), displaying the chemical-potential-like role of
a constant background voltage for the charged thermal field.

In sections 4 and 5 we then extended our previous explicit scalar field calculation with
�B = 0 to the two most important backgrounds with uniform �E and �B: namely �E ‖ �B and
�E ⊥ �B. Completely explicit Fourier series were obtained for the thermal heat kernels of
these systems, thereby providing additional, more complex examples of the general theory.
For brevity we have not included (although one easily could) effective Lagrangians, energy–
momentum tensors and the like in these examples. Our goal has been to provide new insight
into the local aspects of thermal matter fields coupled to static electromagnetic backgrounds.
We hope to present more complete results for interesting systems at a later time.
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